AI大模型入门学习教程
码龄2年
求更新 关注
提问 私信
  • 博客:1,541,489
    社区:3
    1,541,492
    总访问量
  • 1,343
    原创
  • 971
    排名
  • 7,904
    粉丝
  • 0
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2024-01-04
博客简介:

Trb201013的博客

查看详细资料
个人成就
  • 获得23,475次点赞
  • 内容获得54次评论
  • 获得19,775次收藏
  • 代码片获得3,889次分享
  • 原力等级
    原力等级
    9
    原力分
    6,626
    本月获得
    484
创作历程
  • 804篇
    2025年
  • 539篇
    2024年
成就勋章
TA的专栏
  • 大模型教程
    48篇
  • AI大模型
    48篇
  • python
    34篇
  • Python脚本
    27篇
  • Python教程
    17篇
  • python小白
    3篇
  • Python入门
    7篇
  • python0基础
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
创作活动更多

AgenticCoding·十二月创作之星挑战赛

随着寒风渐起,十二月悄然来临,猫头虎诚挚邀请您加入一场别开生面的创意与技术挑战!本次博客挑战赛聚焦AI编程、AgenticCoding、开源实践等前沿主题,激发您在编程与AI领域的无限创作潜能。 无论您是AI的初学者,还是技术界的资深创作者,这里都是您展示才华、碰撞灵感的最佳舞台。您可以: 1.深入解析AI与编程领域的最新技术动态,引领行业发展趋势 2.分享AI技术在实际工作的项目中的创新应用与解决方案 3.揭示您在开源社区中的宝贵经验与独到见解 **活动须知:** 1.参赛者可加入专属活动围观交流群,和其他创作者互动交流,分享心得,互相激励与支持。答疑与围观群请点击右侧群链接:[https://bbs.csdn.net/topics/619770678](https://bbs.csdn.net/topics/619770678) 2.文章质量评分查询入口:[点击查看评分入口](https://www.csdn.net/qc) **我们诚挚邀请您参加「AgenticCoding·十二月创作之星挑战赛」!** 在这个寒冷的十二月,让我们携手借助AI的力量,点亮创作之星的光辉之路,开启属于您的创作之旅!

11人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

《2025“人工智能+“行业发展蓝皮书》深度解读:AI技术演进与产业变革,全面揭秘人工智能如何重塑未来世界!

这篇文章解读了《2025"人工智能+"行业发展蓝皮书》,分析了AI技术的三大演进阶段及大模型、数据、算力三大基石,详细阐述了AI在七大领域的颠覆性应用,探讨了治理伦理挑战,展望了AI对工作方式、产业格局、科学发现和社会服务的深远影响,为企业和个人把握AI机遇、应对变革提供重要参考。
原创
博文更新于 3 小时前 ·
382 阅读 ·
15 点赞 ·
0 评论 ·
12 收藏

别再问要不要学AI了!2025年6个高薪大模型方向,普通人转型成功率最高的竟是这个……

“我非科班出身,能转型大模型吗?”这是过去一年被问到最多的问题。但数据给出的答案令人震惊:2025年第一季度,AI训练师的招聘需求同比增长率高达592%,而AI人才供需比仅为0.5,意味着每两个岗位只能匹配到一位合适候选人。这种供需失衡正创造着前所未有的机会窗口。
原创
博文更新于 3 小时前 ·
797 阅读 ·
19 点赞 ·
0 评论 ·
7 收藏

超越LLM:构建四层系统架构,揭秘大语言模型在复杂任务中的工程化应用与挑战!

本文从工程视角剖析了大语言模型在复杂任务上的局限性,指出LLM缺乏因果推理、状态管理和环境感知能力。复杂任务需要"执行-反馈-验证"闭环,而LLM仅能完成"决策生成"。作者提出构建四层系统架构(语言层、工具执行层、状态层、验证与监控层)使LLM真正"能干活",强调未来有价值的是能设计、验证、监控、治理AI系统的工程师,而非仅依赖Prompt工程。
原创
博文更新于 3 小时前 ·
534 阅读 ·
10 点赞 ·
0 评论 ·
13 收藏

RAG技术完全指南:18种检索增强生成方法对比与选择(值得收藏)

文章全面分析了18种RAG技术,从基础到高级,包含工作原理、代码示例和性能评估。自适应RAG以0.86分表现最佳,其次是纠正性RAG(0.824分)和层次化索引(0.84分)。应根据具体需求选择最适合的技术,未来RAG将结合多种方法优势,发展出更智能高效的系统,为信息检索和自然语言处理带来更多可能性。
原创
博文更新于 3 小时前 ·
244 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

深入探讨:大语言模型(LLM)与人工智能智能体(Agent)的本质区别与联系!

本文深入剖析了LLM与Agent的本质区别,指出LLM仅擅长文本生成而缺乏行动能力,而Agent通过添加规划、记忆和工具调用能力,实现了从"问答机"到"执行者"的质变。Agent能进行任务拆解、保持长期记忆并执行实际操作,成为企业真正需要的"数字员工"。文章还介绍了一个六周大模型实战训练营,帮助学员构建具备多核心能力的AI Agent项目,提升就业竞争力。
原创
博文更新于 4 小时前 ·
400 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

LangChain多智能体协作实战:从单一Agent到动态循环系统的完整指南!

本文详细介绍了如何使用LangChain构建多智能体协作系统,通过研究员、协调员和报告员的专业分工,实现复杂任务的高效处理。文章重点讲解了TeamState设计、LangGraph工作流构建、动态循环机制实现以及调试优化技巧,提供了完整的代码示例和实战建议,帮助开发者掌握多智能体协作的核心技术,提升AI应用的质量和效率。
原创
博文更新于 昨天 09:15 ·
405 阅读 ·
17 点赞 ·
0 评论 ·
7 收藏

从“会聊天“到“会干活“:AI智能体(Agent)技术全解析,带你成为大模型应用高手!

文章探讨了AI从"会聊天"到"会干活"的范式转变,即AI智能体(Agent)的发展。从技术解构(大模型大脑、记忆系统、工具调用等)、应用落地(流程自动化、垂直专家等)、核心挑战(可靠性、长程任务等)和未来趋势(通用化、多模态等)四个维度全面分析了智能体的技术架构、应用场景和发展前景,指出智能体作为"数字同事"将与人类协同工作,是AI发展的重要阶段。
原创
博文更新于 昨天 09:00 ·
549 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

2025年测试工程师新技能:掌握Dify工作流,编排AI提升核心竞争力!

本文介绍如何利用Dify工作流平台构建AI测试智能体,应对AI应用的动态复杂性。通过创建用例生成、UI校验、语义测试等智能体并串联成测试流程,实现自动化AI应用测试。实战案例展示了测试AI天气助手的过程,这种新模式提高效率、应对不确定性、实现关注点分离,并与CI/CD无缝集成,帮助测试工程师成为"智能体编排大师",构建未来质量保障体系。
原创
博文更新于 前天 14:44 ·
870 阅读 ·
23 点赞 ·
0 评论 ·
20 收藏

LLM大模型原理解析:从预训练到RLHF全流程详解!

本文全面解析了大语言模型(LLM)的基本原理,涵盖预训练和后训练两大阶段:通过海量数据学习语言模式,再通过指令微调和领域特定优化提升实用性。文章探讨了推理过程、幻觉现象及其解决方法,并深入讲解强化学习(RLHF)在模型优化中的应用,特别介绍了GRPO算法和思维链推理。最后讨论了带有人类反馈的强化学习如何帮助模型与人类偏好对齐,使LLM更加实用可靠。
原创
博文更新于 前天 14:39 ·
748 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏

AI大模型基础概念扫盲篇:14个核心概念详解,从Agent到Token,再到MoE!

文章详细介绍了大模型领域的14个核心概念,包括AI Agent、Token、嵌入模型、大模型幻觉、对齐、大模型、Transformer、MOE、预训练、微调、提示工程、RAG、MCP和知识图谱。这些概念从基础架构到应用技术,全面覆盖了大模型的关键知识点,为读者提供了系统学习大模型的框架,无论是初学者还是进阶开发者都能从中获益。
原创
博文更新于 前天 14:18 ·
535 阅读 ·
21 点赞 ·
0 评论 ·
7 收藏

震惊!月薪5万的码农,被AI抢了工作,未来职业何去何从?

AI工具崛起使基础编程工作被替代,初级程序员岗位需求断崖式下跌,薪资缩水20%。程序员职业分化为高端人才与普通使用者,转行成为常态。然而,技能虽会过时,编程思维永不过时。掌握大模型技能,提升核心竞争力,才是程序员应对AI时代的必由之路。
原创
博文更新于 2025.11.28 ·
979 阅读 ·
29 点赞 ·
0 评论 ·
15 收藏

AI产品经理转型指南:揭秘80%人易陷的3大误区,助你顺利过渡至高薪职业!

AI产品经理是2025年需求增长240%的高薪岗位(30K-60K),转型需避免三大误区:盲目学习技术、只重理论忽视实践、脱离用户需求。合格AI产品经理需具备四大能力:AI产品建设、业务洞察、技术理解和项目落地经验。可通过系统学习产品知识体系、参与真实项目实训、获取1v1导师指导等方式提升能力,抓住AI时代机遇,成为兼具产品专业技能与行业知识的复合型人才。
原创
博文更新于 2025.11.28 ·
683 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

deepseek低调开源,IMO竞赛金牌级模型DeepSeek-Math-V2:可自证数学推理新突破!

DeepSeek-Math-V2是专注于可自证数学推理的开源大模型,采用"生成-验证"双向增强飞轮架构,包含生成器、验证器和元验证器三大组件。该模型在IMO、CMO等数学竞赛中达到金牌线水平,Putnam竞赛获118/120近满分。通过强化学习闭环实现自我改进,采用自动扩数据策略减少人工标注需求,首次证明了可自证数学推理的可行性,为更强数学AI开辟了道路。
原创
博文更新于 2025.11.28 ·
963 阅读 ·
26 点赞 ·
0 评论 ·
29 收藏

传统AI记忆系统致命伤揭秘:GAM框架如何实现37%准确率提升!

北京人工智能研究院提出GAM框架,采用"即时编译"策略解决传统AI记忆系统压缩导致信息丢失的问题。框架包含记忆器和研究员两个模块,通过组合检索工具实现动态上下文重建。实验显示,该方法在文档问答中准确率提升37%,能高效处理长文本,解决了"上下文腐化"难题,为AI记忆系统提供了新思路。
原创
博文更新于 2025.11.28 ·
254 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

一文搞懂AI智能体:原理+实践+LangGraph完整实现!

本文全面介绍了AI智能体的概念、特征、设计基础和实现方法,详细阐述了模型选择、工具定义和指令配置等核心组件,以及单智能体和多智能体系统的编排模式。最后强调了构建护栏体系的重要性,并通过LangGraph框架提供了一个可直接运行的智能体示例,帮助读者从底层原理到落地实践全面掌握AI智能体的构建方法。
原创
博文更新于 2025.11.28 ·
965 阅读 ·
27 点赞 ·
0 评论 ·
28 收藏

从零开始学大模型应用开发:程序员必学技能+收藏指南,开启AI新时代的编程之旅!

本文针对非AI背景开发者,介绍了大模型应用开发的入门指南。无需深入AI和数学知识,重点在于掌握应用开发方法。文章详细讲解了Prompt Engineering技术、RAG检索增强生成、AI Agent概念及MCP协议,并指出普通程序员可通过开发框架、优化RAG和构建MCP-Server参与大模型生态,将大模型与业务结合,提升开发效率和价值。
原创
博文更新于 2025.11.27 ·
945 阅读 ·
32 点赞 ·
0 评论 ·
17 收藏

AI产品经理揭秘:访谈100多位行业专家,揭示他们真实的工作内容与挑战!

过去的14个月里,对100多位AI产品经理进行了交流和访谈,从OpenAI、Anthropic、Google,到你从未听说的初创公司,涵盖各个层面。我问他们同样的问题:你实际上做什么工作?你需要什么知识?什么技能重要?你使用什么工具?
原创
博文更新于 2025.11.27 ·
626 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

RAGFlow参数配置指南:让AI精准回答工程问题的收藏级教程!

本文针对工程行业AI应用痛点,详细讲解RAGFlow开源引擎的参数配置技巧。从文档预处理、智能分块、知识图谱到召回增强(RAPTOR),提供可直接复用的配置方案和实操步骤。针对技术规范、项目管理、投标答疑等三大场景,给出差异化参数设置,帮助工程人解决AI"答不准"问题,打造专业级工程知识管家。
原创
博文更新于 2025.11.27 ·
763 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

【AI+医疗】AI医生养成记:让大模型掌握临床诊断的动态推理过程!

上海交通大学等团队提出"环境-智能体"训练框架,创建DiagGym虚拟临床环境和DiagAgent诊断智能体,通过端到端强化学习让AI掌握动态诊断能力。团队还构建了DiagBench评测基准(750个病例,973条评估准则)。实验显示,该框架训练的智能体在多轮诊断流程管理能力上显著优于DeepSeek、Claude-4等先进模型,实现了从静态问答到动态决策的AI诊断范式转变。
原创
博文更新于 2025.11.27 ·
618 阅读 ·
11 点赞 ·
0 评论 ·
18 收藏

RAG信息检索全解析:从Embedding到Reranker的超详细教程1

文章介绍了RAG系统中信息检索环节的核心技术,包括文档段落嵌入和用户查询嵌入,将文本转换为向量表示;详细解释了相似度检索的多种方法,如Top-K检索、MMR策略和Reranker二次排序技术;强调了合理切分策略对嵌入效果的重要性,以及查询扩展技术对提高检索准确度的作用。指出RAG的本质是"开卷考试",检索质量直接影响最终生成效果。
原创
博文更新于 2025.11.27 ·
1368 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏
加载更多