The Explainable Ensemble Trees 'e2tree' approach has been proposed by Aria et al. (2024) <doi:10.1007/s00180-022-01312-6>. It aims to explain and interpret decision tree ensemble models using a single tree-like structure. 'e2tree' is a new way of explaining an ensemble tree trained through 'randomForest' or 'xgboost' packages.
| Version: | 0.2.0 |
| Imports: | dplyr, doParallel, parallel, foreach, future.apply, ggplot2, Matrix, partitions, purrr, tidyr, ranger, randomForest, rpart.plot, Rcpp, RSpectra, ape |
| LinkingTo: | Rcpp |
| Suggests: | testthat (≥ 3.0.0) |
| Published: | 2025-07-16 |
| DOI: | 10.32614/CRAN.package.e2tree |
| Author: | Massimo Aria |
| Maintainer: | Massimo Aria <aria at unina.it> |
| BugReports: | https://github.com/massimoaria/e2tree/issues |
| License: | MIT + file LICENSE |
| URL: | https://github.com/massimoaria/e2tree |
| NeedsCompilation: | yes |
| Citation: | e2tree citation info |
| Materials: | README, NEWS |
| CRAN checks: | e2tree results |
| Reference manual: | e2tree.html , e2tree.pdf |
| Package source: | e2tree_0.2.0.tar.gz |
| Windows binaries: | r-devel: e2tree_0.2.0.zip, r-release: e2tree_0.2.0.zip, r-oldrel: e2tree_0.2.0.zip |
| macOS binaries: | r-release (arm64): e2tree_0.2.0.tgz, r-oldrel (arm64): e2tree_0.2.0.tgz, r-release (x86_64): e2tree_0.2.0.tgz, r-oldrel (x86_64): e2tree_0.2.0.tgz |
| Old sources: | e2tree archive |
Please use the canonical form https://CRAN.R-project.org/package=e2tree to link to this page.