|
| 1 | +import os |
| 2 | +import sys |
| 3 | +from queue import Queue |
| 4 | + |
| 5 | +# isort: off |
| 6 | +sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..") |
| 7 | +from utils.llm_data import llm_models_root |
| 8 | +from tensorrt_llm.bindings import executor as tllm |
| 9 | +# isort: on |
| 10 | + |
| 11 | +from tensorrt_llm._torch.pyexecutor.config import update_executor_config |
| 12 | +from tensorrt_llm.executor.request import GenerationRequest |
| 13 | +from tensorrt_llm.executor.worker_base import WorkerBase |
| 14 | +from tensorrt_llm.llmapi.llm_args import LlmArgs |
| 15 | +from tensorrt_llm.sampling_params import SamplingParams |
| 16 | + |
| 17 | +default_model_name = "llama-models-v2/TinyLlama-1.1B-Chat-v1.0" |
| 18 | +model_path = llm_models_root() / default_model_name |
| 19 | + |
| 20 | + |
| 21 | +class TestWorkerBase: |
| 22 | + |
| 23 | + def test_create_engine(self): |
| 24 | + with WorkerBase(engine=model_path) as worker: |
| 25 | + pass |
| 26 | + |
| 27 | + def test_submit_request(self): |
| 28 | + sampling_params = SamplingParams(max_tokens=10) |
| 29 | + request = GenerationRequest(prompt_token_ids=[3, 4, 5], |
| 30 | + sampling_params=sampling_params) |
| 31 | + with WorkerBase(engine=model_path) as worker: |
| 32 | + worker.submit(request) |
| 33 | + |
| 34 | + def test_await_responses(self): |
| 35 | + sampling_params = SamplingParams(max_tokens=10) |
| 36 | + request = GenerationRequest(prompt_token_ids=[3, 4, 5], |
| 37 | + sampling_params=sampling_params) |
| 38 | + with WorkerBase(engine=model_path) as worker: |
| 39 | + result_queue = Queue() |
| 40 | + worker.set_result_queue(result_queue) |
| 41 | + |
| 42 | + worker.submit(request) |
| 43 | + for i in range(10): |
| 44 | + worker.await_responses() |
| 45 | + |
| 46 | + assert result_queue.qsize() > 0 |
| 47 | + |
| 48 | + def _create_executor_config(self): |
| 49 | + llm_args = LlmArgs(model=model_path, cuda_graph_config=None) |
| 50 | + |
| 51 | + executor_config = tllm.ExecutorConfig(1) |
| 52 | + executor_config.max_batch_size = 1 |
| 53 | + |
| 54 | + update_executor_config( |
| 55 | + executor_config, |
| 56 | + backend="pytorch", |
| 57 | + pytorch_backend_config=llm_args.get_pytorch_backend_config(), |
| 58 | + mapping=llm_args.parallel_config.to_mapping(), |
| 59 | + speculative_config=llm_args.speculative_config, |
| 60 | + hf_model_dir=model_path, |
| 61 | + max_input_len=20, |
| 62 | + max_seq_len=40, |
| 63 | + checkpoint_format=llm_args.checkpoint_format, |
| 64 | + checkpoint_loader=llm_args.checkpoint_loader, |
| 65 | + ) |
| 66 | + |
| 67 | + return executor_config |
| 68 | + |
| 69 | + |
| 70 | +if __name__ == "__main__": |
| 71 | + test_worker_base = TestWorkerBase() |
| 72 | + test_worker_base.test_create_engine() |
0 commit comments