

CS107 Handout 36

Spring 2008 May 28, 2008

Assignment 8: Tinkering With Python

There are several alignment methods for measuring the similarity of two DNA
sequences (which for the purposes of this problem can be thought of as strings over a
four-letter alphabet: A, C, G, and T). One such method to align two sequences x and y
consists of inserting spaces at arbitrary locations (including at either end) so that the
resulting sequences x’ and y’ have the same length but do not have a space in the same
position. Then you can assign a score to each position. Position j is scored as follows:

o +1 if x’[j] and y’[j] are the same and neither is a space,
o –1 if x’[j] and y’[j] are different and neither is a space,
o –2 if either x’[j] or y’[j] is a space.

The score for a particular alignment is just the sum of the scores over all positions. For
example, given the sequences GATCGGCAT and CAATGTGAATC, one such alignment
(though not necessarily the best one) is:

 + 11 1 1 11
 G ATCG GCAT
 CAAT GTGAATC
 - 12 2 2 1 2

The positive scores are listed above the alignment, and negative scores are listed below.
This particular alignment has a total score of –4.

Due: Thursday, June 5th at 11:59 p.m.

Within the assn-8-align folder you’ll find a Python program that generates two short
but otherwise random DNA strings and posts the score of an optimal alignment (and I
say an optimal alignment as opposed to the optimal alignment, because two alignments
can have the same score.)

Here’s a transcript of what happens when you invoke the align.py script:

jerry% ./align.py
Generate random DNA strands? yes
Aligning these two strands: GAACATCTGC
 CCTCCACAGC
Optimal alignment score is -2
Generate random DNA strands? yes
Aligning these two strands: GTGGCGAG
 ACCGTGGA

positive scores for matches

negative scores for misses

Please note that some of the resources used in this assignment require

a Stanford Network Account and therefore may not be accessible.

 2

Optimal alignment score is -4
Generate random DNA strands? yes
Aligning these two strands: ATCCTCACAG
 GCGCGATG
Optimal alignment score is -6
Generate random DNA strands? yes
Aligning these two strands: TGTAAGAGAT
 CTAATCGA
Optimal alignment score is -2
Generate random DNA strands? no
jerry%

Your job is to update the implementation to generate not only the optimal score, but to
generate the alignment itself. Here’s a sample run of the script after all the necessary
changes have been made:

jerry% python solution.pyc
Generate random DNA strands? yes
Aligning these two strands:

 TGTACCCGCCGATCCCCGACTAAAAACTCTGGGTATTGGGGTGTACTTCCACCAA
 CGACTCACAACATTCGGATAGAGAAAGCCGTTAGACAGGGCTTAGTGAGACATT

Optimal alignment score is -10

 + 1 11 1 1 11 1 11 11 1 111 1 1 1 1 111 1 11 1 11
 TGTACCCGCCG ATCCCCGACTA A AAACTC TGGGTATTGGGGTGTACTTCCACCAA
 CG ACTCACAACATTCG GA TAGAGAAAGCCGTTAG ACAGGGCT TAGTGAGACATT
 - 1 2 1 1 112 1 12 2 2 2 11 2 11 2 11 1 2 1 111 111

Generate random DNA strands? yes
Aligning these two strands:

 TGTCGAGAATATCTTTCCTGTGGCTCAGACGCAGCGGTCCCCGTAGTCAA
 AGCCGGGGTAATGCGCACGGGAGCCTGCATTTACAATAGCCAGGTGCCCATTTTCAAC

Optimal alignment score is -6

 + 1 11 1 11 1 1 1 1 11 11 11 111 111 111 1 1111
 TGTCGAGAATAT CTTTCCTGTGGCT CAG ACGC AGC GGTCCCCGTAGTCAA
 AGCCGGGGTAATGCGCACGGGAGCCTGCATTTACAATAGCCAGGTGCCCATTTTCAAC
 - 1 1 1 111 2 111 11 1 1 2 122 112 22 1 1 11 2

Generate random DNA strands? yes
Aligning these two strands:

 TCCATATATTGGACGATATACCAGATTCGCCACCTTGTCAGTGGTTGCCCGTAGGG
 TTTCCTGCCCAAGAGTTTCCGACTTGTCCAGGGGTTGCCCGCCGTTGCGGCGCGGG

Optimal alignment score is -7

 + 1 1 1 11 1 1 1 11 11 1 1 111 111 1 1 11111 11 111
 TC CATATATTGGACGATATACCAGATTCG CCACC TTGTCAGTGGTTGCC CGTAGGG
 TTTCCTGCCCAAGA GTT T CC GACTTGTCCAGGGGTTGCCCGCCGTTGCGGCGC GGG
 - 12 1 111111 2 1 2 2 2 1 1 2 1122 1 1 11 12 12

Generate random DNA strands? no
jerry%

 3

My recommendation is that you divide the entire task into two subtasks:

o Update the code you’re given to synthesize the alignment alongside the score,
resting assured that the DNA strings are no longer than 12 characters in length.
By limiting the lengths of the two strings, you can assume that the recursion will
complete in a matter of seconds as opposed to a matter of years. My solution
packages the two strands of the alignment and the alignment score into a three-
key dictionary, where the keys were "strand1", "strand2", and "score".

o Once you’re properly generating alignments for short DNA strands, you’ll want
optimize your implementation to run much more quickly. That way, you can
align longer DNA strands and expect the program to finish. I expect you to be
able to run the alignment of two strands up to length 60 and have it return within
10 seconds.

Memoization

The problem with the program I give you (besides the fact that it only generates the
alignment score but not the alignment itself) is that it’s not scalable—that is, it works
acceptably well enough when aligning two strings of length 12, but force it to deal with
DNA strands of length 40, 500 or (like real ones) 3,000,000,000 and you’ll sit in front of
the computer for hours, years, or all of time, respectively.

The problem lies not in the recursive formulation itself, but rather the implementation.
Each call to the supplied findOptimalAlignment function makes either one or three
recursive calls, depending on whether or not the leading letters in each strand match.
For two arbitrary DNA strands of the same length, you expect the ternary recursive
scenario to present itself around 75% of the time, which makes for a slow algorithm for
anything but laughably short DNA strands.

One technique often used to speed up intensely recursive algorithms is caching—or
more elaborating known in computer theory circles as memoization. Memoization (yes,
it’s spelled correctly—there’s no r) isn’t always useful, but it most certainly is in
situations where an overwhelming majority of the recursive calls are repeats—ones that
have been computed earlier during computation.

 4

For instance, consider an attempt to align the two woefully incompatible strands
"AATT" and "GGCC". A call to findOptimalAlignment("AATT","GGCC") will call
findOptimalAlignment on three separate suffix pairs:

findOptimalAlignment("AATT","GGCC") calls
 findOptimalAlignment("ATT","GCC"),
 findOptimalAlignment("AATT","GCC"),
 findOptimalAlignment(“ATT","GGCC")

Each of those three recursive calls will make three more calls:

 findOptimalAlignment("ATT","GCC") calls
 findOptimalAlignment("TT","CC"),
 findOptimalAlignment("ATT","CC"),
 findOptimalAlignment("TT","GCC")

 findOptimalAlignment("AATT","GCC") calls
 findOptimalAlignment("ATT","CC"),
 findOptimalAlignment("AATT","CC"),
 findOptimalAlignment("ATT","GCC")

 findOptimalAlignment(“ATT","GGCC") calls
 findOptimalAlignment("TT","GCC"),
 findOptimalAlignment("ATT","GCC"),
 findOptimalAlignment("TT","GGCC")

Notice that we’re already seeing some repeated calls. It’s not functionally incorrect to
make the same call a second and third time, but if you know the answer will be the
same, then you’d be smart to cache (or memoize) the result of the first call, consult the
cache the second and third times and return the previously computed result instead of
re-computing it from scratch. This reduces an exponential algorithm to a polynomial
one. Huge. Huge. Savings.

Update the functionally correct but lethargic implementation and introduce
memoization to speed it up. You can declare a single Python dictionary—initially
empty—in the main function and pass it through the recursion as an extra argument.
This is the single, shared cache where you look to see if you’ve solved the same problem
before.

repeated
recursive calls.

