
ProgrammingParadigms-Lecture02  

Instructor (Jerry Cain):Hi, everyone. Welcome. I have four super handouts for you 
today. If you haven't gotten them yet, feel free to just sit down. We're gonna probably 
make it a point because there's so many people in the class to just hand them out while I 
start lecturing. This way we don't have this big bottleneck of people trying to get in by 
11:00. The four handouts are posted to the web page. The mailing lists were created last 
night. And I just looked at it this morning, and there were 245 email addresses on it. So it 
looks like it's working. I haven't sent anything to the email list yet, but I will just contrive 
a message later this afternoon, and send it to everybody. And if you don't get that by 
Monday morning, when I make an announcement saying, "If you didn't get that message 
let me know," then I'll investigate as to why you're not on it. SEPD students, I'm not sure 
that you're actually on the mailing list yet. That system runs a little bit differently, and 
usually they push your email address onto the mailing list a little bit later. I'm not sure 
why, but – so if you don't get an email over the course of the weekend, then just let me 
know. And I'll see what I can do to fix it. I'll also post announcements to the web page so 
that you at least can get them. What I want to do is I want to start talking about the low-
level memory mechanics, so that you understand how data – things as simple as Booleans 
and integers and floating-point numbers and strucks and classes – are all represented in 
memory. It's very interesting, I think, to understand how everything ultimately gets 
represented as a collection of zeros and ones. And how it's faithfully interpreted every 
single time to be that capital A, or that number seven, or Pi, or some struck that 
represents a fraction, things like that. And we'll just become much, much better C and 
C++ programmers as a result of just understanding things at this low of a level.  

So, for the moment, C and C++ are the same language to me. So let's just talk about this. 
Let me just put a little grid up here of all the data types that you've probably dealt with. 
You've probably dealt with boole. You've probably dealt with CAR. I'm sure you have. 
You may not have dealt with the short, but I'll put it up there anyway. You've certainly 
dealt with the int. You've certainly – well, maybe not dealt with the long, but let's just 
pretend you have. You've probably seen a floats. You've probably seen doubles. And 
that'll be enough for me, enough fodder for the first ten minutes here. These three things 
– I'm sorry. These three things right there are certainly related. They're all intended to 
represent scalar numbers. Obviously, this represents a true or a false. This represents in 
our world one of 256 characters. We usually only pay attention to about 75 of them, but 
nonetheless, there are 256 characters that could be represented here. These are all 
numeric. These take a stab at trying to represent arbitrarily precise numbers, okay? The 
character is usually one byte in memory. At least it is in all C and C++ programmers – 
program compilers that I know of. This is typically two bytes. The int can actually be 
anywhere between two and four bytes, but we're going to pretend in this class that it’s 
always four bytes, okay? The long, for the time being, is four bytes of memory. There is 
another data type, which isn't really common enough to deserve to be put on the 
blackboard, called the long long, which gives you eight bytes of memory to represent 
really, really large decimal numbers. They'll come up later on, but I'll talk about them if I 
ever need to. The float is four bytes. It somehow tries to take four bytes of memory and 
represent an arbitrarily precise number to the degree that it can, given that it's using a 



finite amount of memory to represent a number that requires and infinite amount of 
precision, sometimes. And a double, I've seen them ten and twelve bytes on some 
systems, but we're just gonna assume that they're eight bytes. Now, that's the most boring 
spreadsheet you could possibly introduce a class with, but my motivation is that I want to 
uncover what the byte is all about, and how four bytes can represent a large frame of 
numbers, how eight bytes can represent a very large set of numbers, and actually do a 
pretty good job at representing numbers precisely enough for our purposes.  

So forget about bytes for the moment. Now, I'll go back to the boole in a second, because 
it's kind of out of character as to how much memory it takes. But I'm interested, at the 
moment, in what is less commonly called the binary digit, but you've heard it called the 
bit. And Double E students and those who enjoy electronics think of the binary digit in 
terms of transistors and voltages, high and low voltages. Computer scientists don't need 
to view it that way. They just need to recognize that a bit is a very small unit of memory 
that can distinguish between two different values. Double Es would say high-voltage, 
low-voltage. We don't. We actually just assume that a single bit can store a zero or a one. 
Technically, a Boolean could just be mapped to a single bit in memory. It turns out it's 
not practical to do that. But if you really wanted to use a single bit to represent a Boolean 
variable, you could engineer your compiler to do that, okay? Bits are more interesting 
when they're taken in groups. If I put down eight bits here – I'm not even going to commit 
to a zero or a one, but I'm gonna draw this. This isn't zero over one as a fraction, this is 
me drawing eight bits – let me just draw one over here so I have some room – and put a 
little box around each one of them in this binary search way, okay? And I have this big 
exploded picture of what we'll draw several times to represent a single byte of memory. 
Now, the most interesting thing to take away from this drawing is that this little box right 
here can adopt one of two values. Independently of whatever value this box chooses to 
adopt, etc. In fact, there are eight independent choices for each of the bits. I'm assuming 
that makes sense to everybody, okay? That means that this, as a grouping – a byte of 
memory with its eight bits that can independently take on zeros and ones can distinguish 
between two to the eighth, or 256 different values. Okay, and that's why the Ascii table is 
as big as it is, okay? 65 through 65 plus 25 represents the alphabet. I forget where 
lowercase A starts. But every single character that's ever printed to the screen or printed 
to a file is backed by some number. I know you know that. When you look in memory to 
see how the capital A is represented, you would actually see a one right there – I'm sorry, 
I forget where it is actually – a one right there and a one right there. I'll draw it out and 
explain why that's the case. Because capital A is backed by the number 65, we don't put 
things down in decimal in memory. We put them down in base two. Okay? Because that's 
what – that's the easiest thing to represent in a bit-oriented system, okay? That make 
sense to people? Okay. So if I say that the capital A is equal to 65, you have to stop 
thinking about it as 65. You have to think it about it as some sum of perfect powers of 
two. So it isn't 64 – it isn't 65 rather, it's actually 64+1. One is two to the zero. A two is 
two to the first. There's none of that. Four is two to the second. Eight is two to the third. 
Sixteen is four. Thirty-two is five. Sixty-four is six. This is actually two to the sixth plus 
two to the zeroth. Make sense? Okay. As far as the representation in a box like this, if 
you went down and actually examined all the transistors, okay? The eight that are laid 
side-by-side in a single character, but byte of memory, it would look like this.  



And in order to recover the actual decimal equivalent, you really do do – you really do 
the power series expansion, where you say there's a contribution of two to the sixth 
because it's in the sixth – counting from zero from the right, the sixth position from the 
end of the byte. This contributes to the zero, if you can look at it as having contributions 
of two to the first, and two to the third, and two to the seventh that are weighted by a zero 
as opposed to a one, okay? That make sense to people? Okay. So that's good enough for 
characters. Let's graduate to shorts. Some people are very clever when they use shorts. A 
lot of times they'll – if you know that you're going to store a lot of numbers, and they're 
all going to be small, they'll go with an array of shorts, or a vector of shorts, knowing that 
there really will be some memory savings later on. The short, being two bytes, just means 
that two neighboring bytes in memory would be laid down. Those are the two bytes at the 
moment – would be laid down, and the two to the sixteenth different patterns that are 
available to be placed in that space. It can distinguish between two the sixteenth different 
values. That make sense to people? Okay. So I'll just make this up. I'll put lots of zeros 
over here, except I'll put one right there. Did I put too many? Yes. I did. And this is a 
wide bit. Okay. So as far as the number that that represents – I should emphasize that 
technically, you can map that pattern to any number you want to, as long as you do it 
consistently. But you want to make the computer hardware easy to interpret. This place 
right here means that there's a contribution of two to the zeroth, or one. There's a 
contribution of two to the first, contribution of two to the second. So there's a two and a 
four that are being added together. Two to the zeroth, two to the seventh, two to the 
eighth, two to the ninth. Okay, so there actually is a contribution of two to the ninth, 
which is 512. So this really is the number that's represented by this thing. It would be 
512, 516, 518, 519 would have that bit pattern down there, okay? Does that make sense to 
people? If I have another one – oops, I don't want that there. I have one zero, followed by 
all ones and all ones, okay? I know that if this had been a one right there, then that would 
have been a contribution of two to the fifteenth. Does that make sense to people? Okay. 
Zero followed by all ones in binary is like zero being followed by all nines, in some 
sense, in decimal. It's one less than some perfect number that has a lot of zeros at the end, 
okay? Does that make sense? So think about you have a binary odometer on your car, and 
you want to take a mile off, okay, because you're at, let's say, one followed by 15 zeros. If 
you back it up, you expect all of these to be demoted not to nine, but to one. So, as far as 
a representation is concerned, it's one less the two to the fifteenth. Makes sense? And that 
number is two to the fifteenth minus one, which I'm not going to figure out what it is. 
Okay? But you get the jest of what's' going on here?  

Okay. So that's enough. There is a little bit to be said about this bit right here. If I wanted 
to represent the numbers zero through two to the sixteen minus one, I could do that. 
Okay, that's two to the sixteenth different values. I don't want to say that negative 
numbers are as common as positive numbers, but they're not so uncommon that we don't 
want to have a contribution of the mapping to include negative numbers. So what usually 
happens is that this bit, right there, had nothing to do with magnitude. Okay, it's all about 
sign, whether or not you want a zero there because it's positive, or a one for negative. 
And that's usually what zero and one mean when they're inside a sign bit. Makes sense? 
Okay. So if I write down this and I have, let's say, four zeros followed by zero, one, one, 
one, okay? That's a seven. If I put all zeros there, it happens to be a seven that hogged a 



little bit more memory, okay? It was a seven character initially, and now it's a seven 
short. I could argue that this would be the best way to represent negative seven. And you 
can look at it and you can recover the magnitude based on what's been drawn. And then 
just say – look all the way to the left – and say that one is basically the equivalent of a 
minus sign. That would be a fine way to do it if you wanted to go to the effort of actually 
always looking at the left-most bit to figure out whether it's negative or not. The reason 
it's not represented this way is because we want addition and subtraction to actually 
follow very simple rules, okay? Now, let me just be quite obtuse about how you do 
binary addition. Not because it's difficult, but because it's interesting in framing the 
argument as to why we adopt a different representation for negative numbers. Let's just 
deal with a four-bit quantity, okay? And I add a one to it. Okay. Binary addition is like 
decimal addition with more carries because you just don't have as many digits to absorb 
magnitude, so one plus one is two, but you write that down as a zero and you carry the 
one. You do this. And that's how seven plus one becomes eight. Okay. I imagine 
everybody followed that.  

However, I want the computer hardware and its support for addition and subtraction to be 
as simple and obvious as possible. So what I'd like to do is have the number for positive 
seven, when added to the representation for negative seven, to very gracefully become all 
zeros. Does that make sense? Well, if I use the same rules, one – I'm sorry, zeros 
followed by zero, zero, one, one, one. This is four of them. This is eight of them. And I 
want to add that to seven zeros followed by four zeros, zero, one, one, one. Let's put a 
four in there. Let's put an eight in there. If I followed the same rules – and think about – I 
mean it's not like – the hardware is what's propagating electrons around and voltages 
around to emulate addition for us. If we want to follow the same rules, we would say, 
"Okay. Well, that's naught two. Carry the two. That's three. Carry the one. That's that." 
Let me just make sure I don't mess this up. Seven plus seven is fourteen, so it would be 
that right there. Okay. And then you'd have 11 zeros followed by a one. If I really just 
followed the algorithm I did up there blindly, that's how I would arrive at zero. Okay. 
And that's obviously not right. If I were to argue what representation that is, if this is 
negative seven, then this has to be negative fourteen. That's not what 7 plus negative 7 is. 
Okay. So that means that this right here, as negative number, has to be engineered in such 
a way that when you add this to this using normal binary ripple add pattern, okay, that 
you somehow get 16 zeros right here, okay? It's easier to not worry about how to get all 
zeros here. It's actually easier to figure out how to get all ones here. So if I put down four, 
five, six, seven, eight. One, two, three, four, let's mix it up. Let's put the number 15 down. 
And I want to figure out what number – or what bit pattern, to put right here to get all 
ones right here, then you know you would put a bit pattern right there that has a one 
where there's a zero right here and a zero where there's a one up here, okay? This right 
here is basically one mile away from turning over the odometer, okay? Does that make 
sense? Okay. So what I want to do is I want to recognize this as 15 and wonder whether 
or not this is really close to negative 15.  

And the answer is, yes, it is because if I invert – take this right here and I invert all of the 
bits, if I add one to that number right there, do you understand I get this domino effect of 
all of these ones becoming zeros? I do get a one at the end, but it doesn't count because 



there's no room for it. It overflows the two bytes, okay? So this right here would give me 
this one that I don't have space to draw because I'm out of memory, all the way down. So 
what I can do is rather than just changing this right here to be a sign bit, I can take the 
forward number, the positive 15, invert all the numbers, and add one to it, okay? Does 
that make sense? And that's how I get a representation for negative 15. This right here, 
this approach – it's what's called ones' complement – it's not used because it screws up 
addition. This notation for inventing the representation of the negative is what's called 
two's complement, okay? It's not like you have to memorize that. I'm just saying it. And 
this is how you've got all zeros. This is positive 15. This is negative 15. That is zero right 
there, okay? Does that make sense? The neat thing about two's complement is that if you 
have a negative number, and you want to figure out what negative of negative 15 is, you 
can follow the same rules. Invert all the bits – there, one – and add one to it, okay? And 
that's how you get positive 15 back. So this is nice symmetry going on with the system, 
okay? Make sense? Okay. Now, why am I focusing on this? Because you have to 
recognize that certainly in the world of characters and shorts, which is all we've discussed 
so far, that every single pattern corresponds to some real value in our world, okay? 
Characters, it's one of 256 values. We can fill in the Ascii table with ampersands and As 
and periods and colons and things like that, and have some unique integer be interpreted 
as a character every single time. As long as it's constant and it always maps to the same 
exact pattern, then it's a value mapping. As far as shorts are concerned, I could have used 
all 16 bits to represent magnitude. I'm not going to do that because I want there to be just 
as many negative numbers represented as positive numbers.  

So I do, in fact dedicate all of the bits from that line to the right to magnitude, okay, and I 
use the left one – the left-most bit to basically communicate whether the number is 
negative or not, okay? That means that since there are two to the sixteenth different 
patterns available to a two-byte figure, that the short can distinguish between that many 
values. Rather than having it represent zero through two to the sixteenth minus one, I 
actually have it represent negative two to the fifteen – I'm sorry, negative two to the 
fourteen – I'm sorry, negative two to the fifteenth through two to the fifteenth minus one. 
Does that make sense? And everything's center around zero. So I have just as many 
representations for negative numbers as I have for positive numbers. Okay? Makes 
sense? Okay. So let's start doing some really simple code, not because it's code you'd 
normally write. Sometimes you do, not very often. But just to understand what happens 
when you do something like this. I have a CAR variable, CH, and I set it equal to capital 
A. And then I have an int variable called – actually, let me make it a short – S, and I set it 
equal to CH. You don't need a cast for that. What you're really doing is you're just setting 
S equal to whatever number is backing CH. There's a question right there?  

Student:[Inaudible]  

Instructor (Jerry Cain):All right. It shouldn't have been. Oh, I just – I'm sorry, I 
inverted the bit pattern, and then I said you would add one to this, and I just didn't change 
the bit in the drawing. Where'd you go? I just saw – okay. So I didn't add one to this yet. 
But in the conversation at the time I thought it was clear. Okay. Does this make sense to 
people? Okay. There's – certainly it's gonna compile and it's going to execute. And based 



on the other seven boards I've drawn in, you should have some idea as to what's gonna 
happen in response to this line. Print out is the equivalent of a cout statement, but it's in 
pure C. And if I want to print out a short – actually, let me just cout. Less than, less than 
S is less than, less than PNDL. In response to that, I expect it to print out the number 65. 
So to the console I would expect that to be printed. Why is that the case? Because the 
declaration of CH doesn't put a capital A there, it puts the integer value that backs it 
there, which I will draw as decimal. You know that it's really ones and zeros. And so 
when time comes for you to assign to S, what happens in order to achieve the effect of 
the assignment, it will copy this bit pattern. And this is what it really does electronically. 
It just replicates whatever bit pattern is right here onto that space right there. It smears 
these bits onto this little byte like it's peanut butter. And puts a 65 down there. And all the 
extra space is just padded, in this case, with zeros. So that's how 65 goes from a one-byte 
representation to a two-byte representation. Does that make sense? I simplified this a 
little bit. When I put a 65 down here and a smear of 65 in there, I happen to know that the 
left-most bit is a zero there. It's a positive number so that shouldn't surprise you, okay? 
Does that make sense to people? What happens if I do the opposite direction? I do this int 
– I'm sorry, we're not at ints yet. Short – completely new program – S is equal to, I'll say 
67, and I do this. It compiles. There's no casts needed. As far as how the 67 is laid down, 
it's zero, one, zero, zero, zero, zero, one, one. It's two more than 65, obviously. It has an 
extra byte of all zeros. And this is S.  

So when CH gets laid down in memory, and it's assigned to S, two bytes of information, 
and 16 bits cannot somehow be wedged economically into an eight-bit pattern. So what C 
and C++, and many program languages for that matter, do is they simply punt on the stuff 
they don't have room for. And they assume that if you're assigning a large number to a 
smaller one, and the smaller one can only accommodate a certain range of values in the 
first place, that your interested in the minutia of the smaller bits. Does that make sense to 
people? So what happens is it replicates this right here, and it punts on this. And this is 
how, when you do this right here, okay, you go ahead and you print out a C. Make sense 
to everybody? Okay. Now, I've kind of evaded the whole negative number things, but 
negative values don't work too well with characters because unsigned CARs – most 
characters are unsigned. So you actually do get all positive values with the 
representations. You know enough about shorts to know that the two-byte figures – I've 
already told you that longs and ints, at least in our world, are four bytes. They're just a 
four-byte equivalent of a short. So let me deal with this example. I go ahead and I do a 
short, S is equal to, I'll just say – let me write it this way. No, I'll just write it as two to the 
tenth plus two to the third plus two to the zero. That is, of course, not real C. But I'm just 
writing it because I want to be clear about what the bit pattern for that number is. So just 
think about whatever number that adds up to as being stored in S. Okay. This is two to 
the eighth, two to the ninth. One, zero, zero, preceded by all zeros. Lots of zeros. One, 
zero, zero, one. If I take an int, i, and I set it equal to S, the same argument that I made in 
the CAR to short assignment can be taken here. And this is how – and this is somehow 
less surprising because both of them represent integers.  

This is all zeros. All zeros. Lots of zeros followed by one, zero, zero, zero, zero, zero, 
zero, one, zero, zero. And that's why. You just have a lot more space to represent the 



same small number, okay? Trick question. If I set int i equal to – I have 32 bits available 
to me to represent pretty big numbers, so I'm gonna do this. Two to the twenty-third plus 
two to the twenty-first plus two to the fifteenth plus, let's say, seven. Okay? And I'm 
being quite deliberate in my power of two representation of these numbers because seven 
always means that at the bottom, okay? Two to the fifteenth means there's a one right 
there. Two to the – actually, let me change this to two to the fourteen. Make this a zero, 
one. Two to the twenty-first – although this is two to the twenty-fourth. Two to the 
twenty-third, followed by zeros. All zeros right there. So that's more or less what the bit 
pattern for that, as a four-byte integer would look like. I go ahead and I set short S equal 
to i. You could argue that wow, that numbers so big it's not gonna fit in the short, okay? 
And so you might argue that well maybe we should try and come as close as possible and 
make S the biggest number it can be so it can try really hard to look like this number. 
And that's not going to happen. It's gonna do the simplest thing. Remember this is 
implemented electronically, and every single example over there has more or less been 
realized by just doing a bit pattern copy, okay? If you're writing this way, you probably 
know that you're going and taking a four-byte quantity and using it to initialize a two-
byte quantity. So lay that down, this is S. And all it does is say, "You know what, I have 
no patience for you right there. You're out. I'm just gonna copy this down." Okay? And 
so I do this followed by lots of zeros, followed by lots more zeros, followed by one, one, 
one. And I print out S. I'm gonna get the number that is two to the fourteenth plus seven. 
Does that make sense to people?  

Okay. So let me go back and do one more example before I move on to floating-point. 
Oh, yeah?  

Student:Initially you had three to the fifteenth?  

Instructor (Jerry Cain):Right. I'd say it's – it's actually confusing as to what happens. It 
certainly is. I actually don't know what happens when what is a magnitude bit actually 
becomes a sign bit. I have to say I certainly should know what happens. I just don't, 
which why I gracefully said, "Oh, I have an idea. Let me just change this to two to the 
fourteenth." I'll actually run this remnant after lecture and I'll just mail the class this as 
part of this email that everyone is getting today, okay? Yep?  

Student:[Inaudible] the other way around [inaudible] a sign short [inaudible]?  

Instructor (Jerry Cain):Well, it will always preserve sign, and I'm gonna – that's the 
very example I'm gonna do right now, okay? Suppose I did this. Short S is equal to 
negative one. Totally reasonable. Do any of you have any idea what the bit pattern for 
that would look like? And you can only answer if you didn't know the answer prior to 
11:00 a.m. today. Okay. I want to be able to add one to negative one and get all zeros, 
okay? Does that make sense? So the representation for this is actually all ones. In fact, 
anytime you see all ones in a multi-byte figure, it means it's trying to represent negative 
one. Why? Because when I add positive one to that, it causes this domino effect and 
makes all those ones zeros. Does that make sense? So to answer your question, int i equal 
to S, logically I'm supposed to get int to be this very spacious representation of negative 



one. It actually does use the bit pattern copy approach. It copies these. I've just copied all 
the magnitude, okay? And by what I put down there, it's either one or – I'm sorry. It's 
either a very large number or it's negative one. We're told that it's negative one right 
there, okay? What happens is that when you assign this to that right there, it doesn't just 
place zeros right there because then all of the sudden it would be destroying the sign bit. 
It would be putting the zero in the sign bit right there. Make sense? So what it really does, 
and it actually did this over here, but it was just more obvious, is it takes whatever this is 
in the original figure and replicates that all the way through. If these would have 
otherwise been all zeros, and I want to be able to let this one continue a domino effect 
when you add a positive number to a negative number, you technically do what's called 
"sign extend" the figure with all of these extra ones. So now you have something that has 
twice as many dominos that fall over when you add positive one to it, okay? Does that 
make sense?  

Okay. So there you have that. As far as character shorts, ints, and longs, they're all really 
very similar in that they some binary representation in the back representing them. They 
happen to map to real numbers, for ints, longs, and shorts. They happen to pixelate on the 
screen as letters of the alphabet, even though they're really numbers, very small numbers 
in memory, okay? But the overarching point, and I don't want you to – I actually don't 
want you to remember – memorize too much of this. Like, if you know what – if you 
know that seven is one, one, one, and you know that all ones is negative one, that's fine. I 
just want you to understand the concept with integers I have four bytes. I have 32 bits. 
That means I have two to the thirty-second different patterns available to me to map to 
whatever subset of a full integer range I want. The easiest thing to do is to just go from 
two to the negative thirty-first through two to the positive thirty-first minus one, okay? 
There's zero in the middle. That's why it breaks it symmetrically a little bit. When I go 
and start concerning myself with floats – I – you're probably more used to doubles, but 
this is just a smaller version of doubles. I have four bytes available to me to represent 
floating-point numbers, integers with decimal parts following it, in any way I want to. 
This isn't the way it really works, but let me just invent an idea here. Pretend that this is 
how it works. We're not drawing any boxes yet. I could do, let's say I have a sign bit. I'll 
represent that up here as a plus or minus. And if I have 32 bits, you'd, by default, thinking 
about bits and contribution of two to the thirtieth, two to the twenty-nine, all the way 
down through some contribution of two to the zero. And I'm just describing all the things 
that can adopt zeros or ones to represent some number, okay? But I want floats to be able 
to have fractional parts.  

So I'll be moving in the fractional direction, and say, "You know what? Why don't I 
sacrifice two to the thirtieth, and let one bit actually be a contribution of two to the 
negative first?" I'm just making this up. Well, I'm not making it up. This is the way I've 
done it the last seven times I taught this. But I'm moving toward what will really be the 
representation for floating-point numbers. If I happen to have 32 bits right here. And I lay 
down this right here. That's not the number seven – I'm sorry, that's not the number 15 
anymore. Now, it's number seven point five. Does that make sense? Okay, well floats 
aren't very useful if now all you have are integers and half-integers. So what I'm gonna do 
is I'm gonna stop drawing these things above it because I have to keep erasing them. Let's 



just assume that rather than the last bit being a contribution of two to the negative first, let 
me let that be a contribution of negative two to the negative first, and that let that be a 
contribution of two to the negative two. Now I can go down to quarter fractions. Does 
that make sense? Well, what I could do is I could make this right here a contribution of 
two to the zero, two to the negative one, two to the negative two, three four, five, six, 
seven, eight, two to the negative nine. And if I wanted to represent Pi – I'm not going to 
draw it on the board because I'm not really sure what it is, although I know that this part 
would be one, one – then I would use the remaining nine bits that are available to me, 
okay, to do as good a job using contributions of two to the negative first, and two to the 
negative third, and two the negative seventh to come as close as possible to point one 
four one five whatever it is, okay? Does that make sense to – I'm assuming? It is an 
interesting point to remember that because you're using a finite amount of memory, 
you're not going to do a perfect job representing all numbers in the infinite, and infinitely 
dense, real number domain, okay? But you just assume that there's enough bits dedicated 
to fractional parts that you can come close enough without it not really impacting what 
you're trying to do, okay? You only print it out to four decimal places, or something that 
just looks like it's perfect, okay? Does that make sense? It turns out if I do it that way, 
then addition works fine. So I add two point five contributions and it ripples to give me a 
one and I carry a one. It just words exactly the same way. Does that make sense? Okay. It 
turns out that this is not the way it's represented, but it is a technically a reasonable way 
to do it. And when they came up with the standard for representing floating-point 
numbers, they could have gone this way. They just elected not to.  

So what I'm gonna do now is I'm gonna show you what it really does look like. It's a very 
weird thing. But remember that they can interpret a 32-bit pattern any way they want to, 
as long as the protocol is clear, and it's done exactly the same way every single time. So 
for the twentieth time today, I'm gonna draw a four byte figure. I'm gonna leave it open as 
four byte rectangle because I'm not gonna subdivide it into bytes perfectly. I'm going to 
make this a sign bit because I do want to represent – I want negative numbers and 
positive numbers that are floating-point to have an equal shot at being represented, okay? 
That's one of the 32 bits. Does that make sense? The next eight bits are actually taken to 
be a magnitude only – I say it that way. I should just call it an unsigned integer – from 
here to there, okay? And the remaining 23 bits talk about contributions of two to the 
negative one, and two to the negative two, and two to the negative three. Okay, this right 
here, I'm gonna abbreviate as EXP. And this right here, I'm just gonna abbreviate as dot 
XXX XX, okay? The – what – this figure and how it's subdivided is trying to represent 
this as a number. Negative one to – I'll abbreviate this as S – to S right there. One point 
XXX XX times two to the one twenty-eight – I'm sorry, hold on a second. EXP minus 
one twenty-seven, okay? It's a little weird to kind of figure out how the top box matches 
to the bottom one. What this means is that these 23 bits somehow take a shot at 
representing point zero, perfectly as it turns out, to something that's as close to point nine, 
nine bar as you could possibly get with 23 bits of information. When these are all ones, 
it's not negative one. It's basically one minus two to the twenty-third. Does that make 
sense to every? Okay. That is added to one to become the factor that multiplies some 
perfect power of two. Okay? This right here ranges between two to the eighth – I'm sorry, 
255 and zero. Does that make sense?  



When it's 255 and it's all ones, it means the exponent is very, very large. Does that make 
sense? When it's all zeros, it means the exponent is really small. So the exponent, the way 
I've drawn this here, can range from 128 all the way down to negative 127. Makes sense? 
That means this right here can actually scale the number that's being represented to be 
huge, in the two to the one twenty-eight domain, or very small, two to the negative one 
twenty-seventh, okay? The number of added to the world down to the size of an atom, 
okay? You may think this is a weird thing to multiply it by, but because this power of 
two-thing right there really means the number is being represented in the power of two 
domain. You may question whether or not any number I can think of can be represented 
by this thing right here. And then once you come up with a representation, you just 
dissect it and figure out how to lay down a bit pattern in 32 byte – 32-bit figure. Let me 
just put the number seven point zero right there. Well, how do I know that that can be 
represented right here? Seven point zero is not seven point zero. It's seven point zero 
times two to the zeroth, okay? There's not way to get and layer that seven point zero over 
this one point XXX and figure out how – what XXX should be. XXX is bound between 
zero and point nine bar. But I can really write it this way. Three point five times two to 
the first, rather one point seven five times two to the second. So as long as I can do a plus 
or minus on the exponent, I can divide and multiply this by two to squash this into the 
one to one point nine range. And just make sure that – I have to give up if this becomes 
larger than 128 or less than negative 127. But you're dealing with, then, absurdly large 
numbers, or absurdly small numbers. But doubles love the absurdity because they have 
space for that accurate of a fraction, okay? Does that make sense to people? Okay, so this 
right here happens to be the way that floating-point numbers are actually represented in 
memory. If you had the means, and you will in a few weeks, to go down and look at the 
bit patterns for a float, you would be able to pull the bit patterns out, actually write them 
down, do the conversion right here, and figure out what it would print at. It would be a 
little tedious, but you certainly could do it. And you'd understand what the protocol for 
coming from representation to floating-point number would be, okay? Let me hit the last 
ten minutes and talk about what happens when you assign an integer to a float, or a float 
to an integer, okay? I'm gonna get a little crazy on you on the code, all right. But you'll be 
able to take it.  

I have this int i is equal to 35 – actually, let me chose a smaller number. Let me do just 
five is fine. And then I do this. Float F is equal to i. Now you know that this as a 32-bit 
pattern had lots of zeros, followed by zero, one, zero, one at the end, four plus one, okay? 
Makes sense? When I do this, if I print out F, don't let all this talk about bits and 
representation confuse the matter. When you print out F there, it's going to print the 
number five, okay? The interesting thing here is that the representation of five as a 
decimal number is very, very different than the representation of five using this protocol 
right here. So every time – not that you shouldn't do it – but every time you assign an int 
to a float, or a float to an int, it actually has to evaluate what number the original bit 
pattern corresponds to. And then it has to invent a new bit pattern that can lay down in a 
float variable. Does that make sense? This five is not – the five isn't five so much as it is 
one point two five times two to the second. Okay, as far as this is concerned right here. 
So that five, when it's really interpreted to be a five point zero, it's really taken to be a one 
point two five – is that right? Yeah. – Times two to the second. So we have to choose 



EXP to be 129 and we have to choose XXX to be point two five. That means when you 
lay down a bit pattern for five point zero, you expect a one to be right there. And you 
expect one – one, zero, zero, zero, zero, zero, zero, one to be laid down right there, 128 
plus one. Does that make sense to people? You gotta nod your head, or else I don't know. 
Okay. This is very different – and this is where things start to get wacky – and this is 
what one oh seven's all about. If I do this right here, int i is equal to 37. And then I do 
this, float F is equal to asterisk – you're all ready scared. Float, star, ampersand of i. I'm 
gonna be very technical in the way I describe this, but I want you to get it. The example 
above the double line, it evaluates i, discovers that it represents five, so it knows how to 
initialize F. Does that make sense? This right here isn't an operation. It doesn't evaluate i 
at all. All it does is it evaluates the location of i. Does that make sense? So when the 37, 
with it's ones and zeros represented right there, this is where i is in memory. The 
ampersand of i represents that arrow right there, okay? Since i is of type int, ampersand 
of i is of type int, star, raw exposed address of a variable. That's four bytes that happens 
to be storing something we understand to be an int. And then we seduce it, momentarily, 
into thinking that it's a float star, okay?  

Now, this doesn't cause bits to move around, saying, "Oh, I have to pretend I'm 
something else." That would be i reacting to an operation against the address of i, okay? 
All the furniture in the house stays exactly the same, okay? All the ones and zeros assume 
their original position. They don't assume, they stay in their original position. It doesn't 
tell i to move at all. But the type system of this line says, "Oh, you know what? Oh, look. 
I'm pointing to a float star. Isn't that interesting? Now, I'm gonna be reference it." And 
whatever bit pattern happened to be there corresponds to some float. We have no idea 
what it is, except I do know that it's not going to be thirty-seven point zero, okay. Does 
that make sense? In fact it's small enough that all the bits for the number 37 are gonna be 
down here, right, leaving all of these zeros to the left of it, okay? So if I say stop and look 
at this four byte figure through a new set of glasses, this is going to be all zeros, which 
means that the overall number is gonna be weighed by two to the negative one twenty-
seven. Makes sense? There's gonna be some contribution of one point XXX, but this is 
nothing compared to the weight of a two to the negative one twenty-seven. So as a result 
of this right here, and this assignment, if I print out F after this, it's just gonna be some 
ridiculously small number because the bits for 37 happen to occupy positions in the 
floating-point format that contribute to the negative twenty-third, and to the negative 
twentieth, and things like that, okay? Does that make sense to people? Okay. So this is 
representative of the type of things that we're gonna be doing for the next week and a 
half. A lot of the examples up front are going to seem contrived and meaningless. I don't 
want to say that they're meaningless. They're certainly contrived because I just want you 
to get an understanding of how memory is manipulated at the processor level.  

Ultimately, come next Wednesday, we're gonna be able to write real code that leverages 
off of this understanding of how bits are laid down, and how ints versus floats versus 
doubles are all represented, okay? I have two minutes. I want to try one more example. I 
just want to introduce you to yet one more complexity of the C and C++ type system, and 
all this cast business. Let me do this. Let me do float F is equal to seven point zero. And 
let me do this short S is equal to asterisk, short star, ampersand of F. Looks very similar 



to this, except there's the one interesting part that's being introduced to this problem, is 
that the figures are different sizes, okay? Here I laid down F. It stores the number seven 
point zero in there. And that's the bit pattern for it, okay? The second line says, "I don't 
care what F is. I trust that it's normally interpreted as a float, and that's why I know that 
this arrow is of type float, star." Oh, let's pretend – no, it isn't any more. You're actually 
pointing – that arrow we just evaluated? It wasn't pointing to a float. We were wrong. It's 
actually pointing to a two byte short. So all of the sudden, it only sees this far, okay? It's 
got twenty-forty vision, and this right here, this arrow, gets dereferenced. And as far as 
the initialization of S is concerned, it assumes that this is a short. It assumes that this is a 
short so it can achieve the effect of the assignment by just replicating this bit pattern right 
there, okay? And so it gets that. Okay, and whatever bit pattern that happens to 
correspond to in the short integer domain, is what it is. So when we print it out, it's going 
to print something. Seven point zero means that there's probably gonna be some non-zero 
bits right here. So it's actually going to be a fairly – it's gonna have ones in the upper half 
of the representation. So S is gonna be non-zero. I'm pretty sure of that, okay? Does that 
make sense to people?  

Okay. That's a good place to leave. Come Monday, we'll start talking about – we'll talk a 
little bit about doubles, not much. Talk about strucks, pointers, all of that stuff, and 
eventually start to write real code. Okay.  

[End of Audio]  
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