|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import hypothesis.strategies as st |
| 17 | +import torch |
| 18 | +import torch.nn as nn |
| 19 | +from hypothesis import given, settings |
| 20 | +import torch.nn.functional as F |
| 21 | +from opacus.grad_sample import wrap_model |
| 22 | + |
| 23 | +from .common import GradSampleHooks_test |
| 24 | + |
| 25 | + |
| 26 | +class Embedding_bag_test(GradSampleHooks_test): |
| 27 | + @given( |
| 28 | + N=st.integers(4, 8), |
| 29 | + sz=st.integers(3, 7), |
| 30 | + V=st.integers(10, 32), |
| 31 | + D=st.integers(10, 17), |
| 32 | + mode=st.sampled_from(["sum", "mean"]), |
| 33 | + ) |
| 34 | + @settings(deadline=10000) |
| 35 | + def test_input_across_dims( |
| 36 | + self, |
| 37 | + N: int, |
| 38 | + sz: int, |
| 39 | + V: int, |
| 40 | + D: int, |
| 41 | + mode: str, |
| 42 | + ): |
| 43 | + emb = nn.EmbeddingBag(num_embeddings=V, embedding_dim=D, mode=mode) |
| 44 | + |
| 45 | + sizes = torch.randint(low=1, high=sz + 1, size=(N,)) |
| 46 | + offsets = torch.LongTensor([0] + torch.cumsum(sizes, dim=0).tolist()[:-1]) |
| 47 | + input = [] |
| 48 | + for size in sizes: |
| 49 | + input += [torch.randperm(V)[:size]] |
| 50 | + |
| 51 | + input = torch.cat(input, dim=0) |
| 52 | + # target = torch.randn(N, D) |
| 53 | + |
| 54 | + # output = emb(input, offsets) |
| 55 | + # loss = F.mse_loss(output, target) |
| 56 | + # loss.backward() |
| 57 | + |
| 58 | + # # Compute microbatch |
| 59 | + # grad_microbatches = [] |
| 60 | + # for i in range(N): |
| 61 | + # emb.zero_grad() |
| 62 | + # output = emb(input[offsets[i] : offsets[i] + sizes[i]], None) |
| 63 | + # loss = F.mse_loss(output, target[i]) |
| 64 | + # loss.backward() |
| 65 | + # grad_microbatches.append() |
| 66 | + |
| 67 | + # import pdb;pdb.set_trace() |
| 68 | + |
| 69 | + def chunk_method(x): |
| 70 | + input, offsets = x |
| 71 | + for i_offset, offset in enumerate(offsets): |
| 72 | + if i_offset < len(offsets) - 1: |
| 73 | + next_offset = offsets[i_offset + 1] |
| 74 | + else: |
| 75 | + next_offset = len(input) |
| 76 | + yield (input[offset:next_offset], torch.LongTensor([0])) |
| 77 | + print(N, sz, V, D, mode) |
| 78 | + print(input, offsets) |
| 79 | + self.run_test((input, offsets), emb, chunk_method=chunk_method) |
0 commit comments