@@ -21,7 +21,7 @@ def SRGAN_g(t_image, is_train=False, reuse=False):
2121 b_init = None # tf.constant_initializer(value=0.0)
2222 g_init = tf .random_normal_initializer (1. , 0.02 )
2323 with tf .variable_scope ("SRGAN_g" , reuse = reuse ) as vs :
24- tl .layers .set_name_reuse (reuse )
24+ # tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
2525 n = InputLayer (t_image , name = 'in' )
2626 n = Conv2d (n , 64 , (3 , 3 ), (1 , 1 ), act = tf .nn .relu , padding = 'SAME' , W_init = w_init , name = 'n64s1/c' )
2727 temp = n
@@ -32,12 +32,12 @@ def SRGAN_g(t_image, is_train=False, reuse=False):
3232 nn = BatchNormLayer (nn , act = tf .nn .relu , is_train = is_train , gamma_init = g_init , name = 'n64s1/b1/%s' % i )
3333 nn = Conv2d (nn , 64 , (3 , 3 ), (1 , 1 ), act = None , padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'n64s1/c2/%s' % i )
3434 nn = BatchNormLayer (nn , is_train = is_train , gamma_init = g_init , name = 'n64s1/b2/%s' % i )
35- nn = ElementwiseLayer ([n , nn ], tf .add , 'b_residual_add/%s' % i )
35+ nn = ElementwiseLayer ([n , nn ], tf .add , name = 'b_residual_add/%s' % i )
3636 n = nn
3737
3838 n = Conv2d (n , 64 , (3 , 3 ), (1 , 1 ), act = None , padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'n64s1/c/m' )
3939 n = BatchNormLayer (n , is_train = is_train , gamma_init = g_init , name = 'n64s1/b/m' )
40- n = ElementwiseLayer ([n , temp ], tf .add , 'add3' )
40+ n = ElementwiseLayer ([n , temp ], tf .add , name = 'add3' )
4141 # B residual blacks end
4242
4343 n = Conv2d (n , 256 , (3 , 3 ), (1 , 1 ), act = None , padding = 'SAME' , W_init = w_init , name = 'n256s1/1' )
@@ -63,7 +63,7 @@ def SRGAN_g2(t_image, is_train=False, reuse=False):
6363 g_init = tf .random_normal_initializer (1. , 0.02 )
6464 size = t_image .get_shape ().as_list ()
6565 with tf .variable_scope ("SRGAN_g" , reuse = reuse ) as vs :
66- tl .layers .set_name_reuse (reuse )
66+ # tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
6767 n = InputLayer (t_image , name = 'in' )
6868 n = Conv2d (n , 64 , (3 , 3 ), (1 , 1 ), act = tf .nn .relu , padding = 'SAME' , W_init = w_init , name = 'n64s1/c' )
6969 temp = n
@@ -74,12 +74,12 @@ def SRGAN_g2(t_image, is_train=False, reuse=False):
7474 nn = BatchNormLayer (nn , act = tf .nn .relu , is_train = is_train , gamma_init = g_init , name = 'n64s1/b1/%s' % i )
7575 nn = Conv2d (nn , 64 , (3 , 3 ), (1 , 1 ), act = None , padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'n64s1/c2/%s' % i )
7676 nn = BatchNormLayer (nn , is_train = is_train , gamma_init = g_init , name = 'n64s1/b2/%s' % i )
77- nn = ElementwiseLayer ([n , nn ], tf .add , 'b_residual_add/%s' % i )
77+ nn = ElementwiseLayer ([n , nn ], tf .add , name = 'b_residual_add/%s' % i )
7878 n = nn
7979
8080 n = Conv2d (n , 64 , (3 , 3 ), (1 , 1 ), act = None , padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'n64s1/c/m' )
8181 n = BatchNormLayer (n , is_train = is_train , gamma_init = g_init , name = 'n64s1/b/m' )
82- n = ElementwiseLayer ([n , temp ], tf .add , 'add3' )
82+ n = ElementwiseLayer ([n , temp ], tf .add , name = 'add3' )
8383 # B residual blacks end
8484
8585 # n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
@@ -110,7 +110,7 @@ def SRGAN_d2(t_image, is_train=False, reuse=False):
110110 g_init = tf .random_normal_initializer (1. , 0.02 )
111111 lrelu = lambda x : tl .act .lrelu (x , 0.2 )
112112 with tf .variable_scope ("SRGAN_d" , reuse = reuse ) as vs :
113- tl .layers .set_name_reuse (reuse )
113+ # tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
114114 n = InputLayer (t_image , name = 'in' )
115115 n = Conv2d (n , 64 , (3 , 3 ), (1 , 1 ), act = lrelu , padding = 'SAME' , W_init = w_init , name = 'n64s1/c' )
116116
0 commit comments