Skip to content

Commit 20fbe03

Browse files
committed
update for TF1.3, TL1.8.0+
1 parent bc49e93 commit 20fbe03

File tree

2 files changed

+10
-8
lines changed

2 files changed

+10
-8
lines changed

main.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99

1010
import tensorflow as tf
1111
import tensorlayer as tl
12-
from model import *
12+
from model import SRGAN_g, SRGAN_d, Vgg19_simple_api
1313
from utils import *
1414
from config import config, log_config
1515

@@ -65,7 +65,9 @@ def train():
6565
_, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True)
6666

6767
net_g.print_params(False)
68+
net_g.print_layers()
6869
net_d.print_params(False)
70+
net_d.print_layers()
6971

7072
## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA
7173
t_target_image_224 = tf.image.resize_images(

model.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ def SRGAN_g(t_image, is_train=False, reuse=False):
2121
b_init = None # tf.constant_initializer(value=0.0)
2222
g_init = tf.random_normal_initializer(1., 0.02)
2323
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
24-
tl.layers.set_name_reuse(reuse)
24+
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
2525
n = InputLayer(t_image, name='in')
2626
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
2727
temp = n
@@ -32,12 +32,12 @@ def SRGAN_g(t_image, is_train=False, reuse=False):
3232
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
3333
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
3434
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
35-
nn = ElementwiseLayer([n, nn], tf.add, 'b_residual_add/%s' % i)
35+
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
3636
n = nn
3737

3838
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
3939
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
40-
n = ElementwiseLayer([n, temp], tf.add, 'add3')
40+
n = ElementwiseLayer([n, temp], tf.add, name='add3')
4141
# B residual blacks end
4242

4343
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
@@ -63,7 +63,7 @@ def SRGAN_g2(t_image, is_train=False, reuse=False):
6363
g_init = tf.random_normal_initializer(1., 0.02)
6464
size = t_image.get_shape().as_list()
6565
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
66-
tl.layers.set_name_reuse(reuse)
66+
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
6767
n = InputLayer(t_image, name='in')
6868
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
6969
temp = n
@@ -74,12 +74,12 @@ def SRGAN_g2(t_image, is_train=False, reuse=False):
7474
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
7575
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
7676
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
77-
nn = ElementwiseLayer([n, nn], tf.add, 'b_residual_add/%s' % i)
77+
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
7878
n = nn
7979

8080
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
8181
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
82-
n = ElementwiseLayer([n, temp], tf.add, 'add3')
82+
n = ElementwiseLayer([n, temp], tf.add, name='add3')
8383
# B residual blacks end
8484

8585
# n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
@@ -110,7 +110,7 @@ def SRGAN_d2(t_image, is_train=False, reuse=False):
110110
g_init = tf.random_normal_initializer(1., 0.02)
111111
lrelu = lambda x: tl.act.lrelu(x, 0.2)
112112
with tf.variable_scope("SRGAN_d", reuse=reuse) as vs:
113-
tl.layers.set_name_reuse(reuse)
113+
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
114114
n = InputLayer(t_image, name='in')
115115
n = Conv2d(n, 64, (3, 3), (1, 1), act=lrelu, padding='SAME', W_init=w_init, name='n64s1/c')
116116

0 commit comments

Comments
 (0)