Skip to content

Commit 3351605

Browse files
author
TruongNM
committed
Attemp 4 initLr 0.01, decayRate 0.95, decayRate 0.95, decayStep 3000
1 parent a909f10 commit 3351605

23 files changed

+507
-337
lines changed

CNN2Head_train_101age.ipynb

Lines changed: 10 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@
5959
},
6060
{
6161
"cell_type": "code",
62-
"execution_count": 6,
62+
"execution_count": 3,
6363
"metadata": {},
6464
"outputs": [
6565
{
@@ -126,71 +126,7 @@
126126
"name": "stdout",
127127
"output_type": "stream",
128128
"text": [
129-
"Default GPU Device: /device:GPU:0\n",
130-
"Create new model\n",
131-
"OK\n",
132-
"Epoch: 1\n",
133-
"Learning rate: 0.010000\n",
134-
"Training on batch 1000/1734\n",
135-
"Smile task train accuracy: 83.38556948519606\n",
136-
"Gender task train accuracy: 81.4643091574023\n",
137-
"Age task train error: 23.746819\n",
138-
"Smile loss: 0.44061166\n",
139-
"Gender loss: 0.44948837\n",
140-
"Age loss: 4.0419455\n",
141-
"Total loss: 5.683907. L2-loss: 0.75186163\n",
142-
"\n",
143-
"\n",
144-
"Epoch: 2\n",
145-
"Learning rate: 0.010000\n",
146-
"Training on batch 1000/1734\n",
147-
"Smile task train accuracy: 91.29043014338113\n",
148-
"Gender task train accuracy: 86.5926211488169\n",
149-
"Age task train error: 23.729975\n",
150-
"Smile loss: 0.3214132\n",
151-
"Gender loss: 0.3728076\n",
152-
"Age loss: 3.963524\n",
153-
"Total loss: 5.016013. L2-loss: 0.35826778\n",
154-
"\n",
155-
"\n",
156-
"Epoch: 3\n",
157-
"Learning rate: 0.009500\n",
158-
"Training on batch 1000/1734\n",
159-
"Smile task train accuracy: 92.08868144690781\n",
160-
"Gender task train accuracy: 87.20801817007356\n",
161-
"Age task train error: 23.71479\n",
162-
"Smile loss: 0.30412948\n",
163-
"Gender loss: 0.36167595\n",
164-
"Age loss: 3.9354455\n",
165-
"Total loss: 4.95105. L2-loss: 0.34979847\n",
166-
"\n",
167-
"\n",
168-
"Epoch: 4\n",
169-
"Learning rate: 0.009500\n",
170-
"Training on batch 1000/1734\n",
171-
"Smile task train accuracy: 92.6913843691651\n",
172-
"Gender task train accuracy: 87.64547149956762\n",
173-
"Age task train error: 23.703087\n",
174-
"Smile loss: 0.28748268\n",
175-
"Gender loss: 0.35309085\n",
176-
"Age loss: 3.916551\n",
177-
"Total loss: 4.9108706. L2-loss: 0.35374624\n",
178-
"\n",
179-
"\n",
180-
"Epoch: 5\n",
181-
"Learning rate: 0.009025\n",
182-
"Training on batch 1000/1734\n",
183-
"Smile task train accuracy: 92.90834528056547\n",
184-
"Gender task train accuracy: 87.93423218788422\n",
185-
"Age task train error: 23.670803\n",
186-
"Smile loss: 0.28477466\n",
187-
"Gender loss: 0.34857315\n",
188-
"Age loss: 3.9004726\n",
189-
"Total loss: 4.89257. L2-loss: 0.35875005\n",
190-
"\n",
191-
"\n",
192-
"Epoch: 6\n",
193-
"Learning rate: 0.009025\n"
129+
"Default GPU Device: /device:GPU:0\n"
194130
]
195131
}
196132
],
@@ -242,19 +178,19 @@
242178
"\n",
243179
"saver = tf.train.Saver()\n",
244180
"\n",
245-
"if not os.path.isfile(SAVE_FOLDER3 + 'model-age101.ckpt.index'):\n",
181+
"if not os.path.isfile('./save/current5/model-age101.ckpt.index'):\n",
246182
" print('Create new model')\n",
247183
" sess.run(tf.global_variables_initializer())\n",
248184
" print('OK')\n",
249185
"else:\n",
250186
" print('Restoring existed model')\n",
251-
" saver.restore(sess, SAVE_FOLDER3 + 'model-age101.ckpt')\n",
187+
" saver.restore(sess, './save/current5/model-age101.ckpt.index')\n",
252188
" print('OK')\n",
253189
"\n",
254190
"loss_summary_placeholder = tf.placeholder(tf.float32)\n",
255191
"tf.summary.scalar('loss', loss_summary_placeholder)\n",
256192
"merge_summary = tf.summary.merge_all()\n",
257-
"writer = tf.summary.FileWriter(\"./summary3/\", graph=tf.get_default_graph())\n",
193+
"writer = tf.summary.FileWriter(\"./summary/summary5/\", graph=tf.get_default_graph())\n",
258194
"\n",
259195
"learning_rate = tf.get_collection('learning_rate')[0]\n",
260196
"current_epoch = (int)(global_step.eval() / (len(train_data) // BATCH_SIZE))\n",
@@ -289,8 +225,8 @@
289225
" print(\"Learning rate: %f\" % learning_rate.eval())\n",
290226
"# for batch in range(number_batch):\n",
291227
" for batch in range(number_batch):\n",
292-
" if (batch+1)%1000==0:\n",
293-
" print('Training on batch {0}/{1}'.format(str(batch + 1), str(number_batch)))\n",
228+
"# if (batch+1)%1000==0:\n",
229+
"# print('Training on batch {0}/{1}'.format(str(batch + 1), str(number_batch)))\n",
294230
" top = batch * BATCH_SIZE\n",
295231
" bot = min((batch + 1) * BATCH_SIZE, len(train_data))\n",
296232
" batch_img = np.asarray(train_img[top:bot])\n",
@@ -384,10 +320,10 @@
384320
" summary = sess.run(merge_summary, feed_dict={loss_summary_placeholder: avg_ttl})\n",
385321
" writer.add_summary(summary, global_step=epoch)\n",
386322
"\n",
387-
" with open('log2.csv', 'a') as f:\n",
323+
" with open('log5.csv', 'a') as f:\n",
388324
" # epochs, smile_train_accuracy, gender_train_accuracy, age_train_accuracy,\n",
389325
" # avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl\n",
390-
" f.write('{0},{1},{2},{3},{4},{5},{6},{7},{8}\\n'.format(current_epoch, smile_train_accuracy, gender_train_accuracy, age_train_accuracy, avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl))\n",
326+
" f.write('{0},{1},{2},{3},{4},{5},{6},{7},{8}\\n'.format(epoch, smile_train_accuracy, gender_train_accuracy, age_train_accuracy, avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl))\n",
391327
"\n",
392328
" print('Smile task train accuracy: ' + str(smile_train_accuracy * 100))\n",
393329
" print('Gender task train accuracy: ' + str(gender_train_accuracy * 100))\n",
@@ -401,7 +337,7 @@
401337
"\n",
402338
" print('\\n')\n",
403339
" \n",
404-
" saver.save(sess, SAVE_FOLDER3 + 'model-age101.ckpt')"
340+
" saver.save(sess, './save/current5/model-age101.ckpt.index')"
405341
]
406342
},
407343
{

__pycache__/const.cpython-36.pyc

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)