|
59 | 59 | }, |
60 | 60 | { |
61 | 61 | "cell_type": "code", |
62 | | - "execution_count": 6, |
| 62 | + "execution_count": 3, |
63 | 63 | "metadata": {}, |
64 | 64 | "outputs": [ |
65 | 65 | { |
|
126 | 126 | "name": "stdout", |
127 | 127 | "output_type": "stream", |
128 | 128 | "text": [ |
129 | | - "Default GPU Device: /device:GPU:0\n", |
130 | | - "Create new model\n", |
131 | | - "OK\n", |
132 | | - "Epoch: 1\n", |
133 | | - "Learning rate: 0.010000\n", |
134 | | - "Training on batch 1000/1734\n", |
135 | | - "Smile task train accuracy: 83.38556948519606\n", |
136 | | - "Gender task train accuracy: 81.4643091574023\n", |
137 | | - "Age task train error: 23.746819\n", |
138 | | - "Smile loss: 0.44061166\n", |
139 | | - "Gender loss: 0.44948837\n", |
140 | | - "Age loss: 4.0419455\n", |
141 | | - "Total loss: 5.683907. L2-loss: 0.75186163\n", |
142 | | - "\n", |
143 | | - "\n", |
144 | | - "Epoch: 2\n", |
145 | | - "Learning rate: 0.010000\n", |
146 | | - "Training on batch 1000/1734\n", |
147 | | - "Smile task train accuracy: 91.29043014338113\n", |
148 | | - "Gender task train accuracy: 86.5926211488169\n", |
149 | | - "Age task train error: 23.729975\n", |
150 | | - "Smile loss: 0.3214132\n", |
151 | | - "Gender loss: 0.3728076\n", |
152 | | - "Age loss: 3.963524\n", |
153 | | - "Total loss: 5.016013. L2-loss: 0.35826778\n", |
154 | | - "\n", |
155 | | - "\n", |
156 | | - "Epoch: 3\n", |
157 | | - "Learning rate: 0.009500\n", |
158 | | - "Training on batch 1000/1734\n", |
159 | | - "Smile task train accuracy: 92.08868144690781\n", |
160 | | - "Gender task train accuracy: 87.20801817007356\n", |
161 | | - "Age task train error: 23.71479\n", |
162 | | - "Smile loss: 0.30412948\n", |
163 | | - "Gender loss: 0.36167595\n", |
164 | | - "Age loss: 3.9354455\n", |
165 | | - "Total loss: 4.95105. L2-loss: 0.34979847\n", |
166 | | - "\n", |
167 | | - "\n", |
168 | | - "Epoch: 4\n", |
169 | | - "Learning rate: 0.009500\n", |
170 | | - "Training on batch 1000/1734\n", |
171 | | - "Smile task train accuracy: 92.6913843691651\n", |
172 | | - "Gender task train accuracy: 87.64547149956762\n", |
173 | | - "Age task train error: 23.703087\n", |
174 | | - "Smile loss: 0.28748268\n", |
175 | | - "Gender loss: 0.35309085\n", |
176 | | - "Age loss: 3.916551\n", |
177 | | - "Total loss: 4.9108706. L2-loss: 0.35374624\n", |
178 | | - "\n", |
179 | | - "\n", |
180 | | - "Epoch: 5\n", |
181 | | - "Learning rate: 0.009025\n", |
182 | | - "Training on batch 1000/1734\n", |
183 | | - "Smile task train accuracy: 92.90834528056547\n", |
184 | | - "Gender task train accuracy: 87.93423218788422\n", |
185 | | - "Age task train error: 23.670803\n", |
186 | | - "Smile loss: 0.28477466\n", |
187 | | - "Gender loss: 0.34857315\n", |
188 | | - "Age loss: 3.9004726\n", |
189 | | - "Total loss: 4.89257. L2-loss: 0.35875005\n", |
190 | | - "\n", |
191 | | - "\n", |
192 | | - "Epoch: 6\n", |
193 | | - "Learning rate: 0.009025\n" |
| 129 | + "Default GPU Device: /device:GPU:0\n" |
194 | 130 | ] |
195 | 131 | } |
196 | 132 | ], |
|
242 | 178 | "\n", |
243 | 179 | "saver = tf.train.Saver()\n", |
244 | 180 | "\n", |
245 | | - "if not os.path.isfile(SAVE_FOLDER3 + 'model-age101.ckpt.index'):\n", |
| 181 | + "if not os.path.isfile('./save/current5/model-age101.ckpt.index'):\n", |
246 | 182 | " print('Create new model')\n", |
247 | 183 | " sess.run(tf.global_variables_initializer())\n", |
248 | 184 | " print('OK')\n", |
249 | 185 | "else:\n", |
250 | 186 | " print('Restoring existed model')\n", |
251 | | - " saver.restore(sess, SAVE_FOLDER3 + 'model-age101.ckpt')\n", |
| 187 | + " saver.restore(sess, './save/current5/model-age101.ckpt.index')\n", |
252 | 188 | " print('OK')\n", |
253 | 189 | "\n", |
254 | 190 | "loss_summary_placeholder = tf.placeholder(tf.float32)\n", |
255 | 191 | "tf.summary.scalar('loss', loss_summary_placeholder)\n", |
256 | 192 | "merge_summary = tf.summary.merge_all()\n", |
257 | | - "writer = tf.summary.FileWriter(\"./summary3/\", graph=tf.get_default_graph())\n", |
| 193 | + "writer = tf.summary.FileWriter(\"./summary/summary5/\", graph=tf.get_default_graph())\n", |
258 | 194 | "\n", |
259 | 195 | "learning_rate = tf.get_collection('learning_rate')[0]\n", |
260 | 196 | "current_epoch = (int)(global_step.eval() / (len(train_data) // BATCH_SIZE))\n", |
|
289 | 225 | " print(\"Learning rate: %f\" % learning_rate.eval())\n", |
290 | 226 | "# for batch in range(number_batch):\n", |
291 | 227 | " for batch in range(number_batch):\n", |
292 | | - " if (batch+1)%1000==0:\n", |
293 | | - " print('Training on batch {0}/{1}'.format(str(batch + 1), str(number_batch)))\n", |
| 228 | + "# if (batch+1)%1000==0:\n", |
| 229 | + "# print('Training on batch {0}/{1}'.format(str(batch + 1), str(number_batch)))\n", |
294 | 230 | " top = batch * BATCH_SIZE\n", |
295 | 231 | " bot = min((batch + 1) * BATCH_SIZE, len(train_data))\n", |
296 | 232 | " batch_img = np.asarray(train_img[top:bot])\n", |
|
384 | 320 | " summary = sess.run(merge_summary, feed_dict={loss_summary_placeholder: avg_ttl})\n", |
385 | 321 | " writer.add_summary(summary, global_step=epoch)\n", |
386 | 322 | "\n", |
387 | | - " with open('log2.csv', 'a') as f:\n", |
| 323 | + " with open('log5.csv', 'a') as f:\n", |
388 | 324 | " # epochs, smile_train_accuracy, gender_train_accuracy, age_train_accuracy,\n", |
389 | 325 | " # avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl\n", |
390 | | - " f.write('{0},{1},{2},{3},{4},{5},{6},{7},{8}\\n'.format(current_epoch, smile_train_accuracy, gender_train_accuracy, age_train_accuracy, avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl))\n", |
| 326 | + " f.write('{0},{1},{2},{3},{4},{5},{6},{7},{8}\\n'.format(epoch, smile_train_accuracy, gender_train_accuracy, age_train_accuracy, avg_smile_loss, avg_gender_loss, avg_age_loss, avg_ttl, avg_rgl))\n", |
391 | 327 | "\n", |
392 | 328 | " print('Smile task train accuracy: ' + str(smile_train_accuracy * 100))\n", |
393 | 329 | " print('Gender task train accuracy: ' + str(gender_train_accuracy * 100))\n", |
|
401 | 337 | "\n", |
402 | 338 | " print('\\n')\n", |
403 | 339 | " \n", |
404 | | - " saver.save(sess, SAVE_FOLDER3 + 'model-age101.ckpt')" |
| 340 | + " saver.save(sess, './save/current5/model-age101.ckpt.index')" |
405 | 341 | ] |
406 | 342 | }, |
407 | 343 | { |
|
0 commit comments