Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/layer/spectrogram.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -207,4 +207,4 @@ int Spectrogram::forward(const Mat& bottom_blob, Mat& top_blob, const Option& op
return 0;
}

} // namespace ncnn
} // namespace ncnn
2 changes: 1 addition & 1 deletion src/layer/spectrogram.h
Original file line number Diff line number Diff line change
Expand Up @@ -33,4 +33,4 @@ class Spectrogram : public Layer

} // namespace ncnn

#endif // LAYER_SPECTROGRAM_H
#endif // LAYER_SPECTROGRAM_H
277 changes: 277 additions & 0 deletions src/layer/x86/spectrogram_x86.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "spectrogram_x86.h"

namespace ncnn {

Spectrogram_x86::Spectrogram_x86()
: conv_transpose(0)
{
one_blob_only = true;
support_inplace = false;
}

Spectrogram_x86::~Spectrogram_x86()
{
delete conv_transpose;
}

int Spectrogram_x86::load_param(const ParamDict& pd)
{
n_fft = pd.get(0, 0);
power = pd.get(1, 0);
hoplen = pd.get(2, n_fft / 4);
winlen = pd.get(3, n_fft);
window_type = pd.get(4, 0);
center = pd.get(5, 1);
pad_type = pd.get(6, 2);
normalized = pd.get(7, 0);
onesided = pd.get(8, 1);

// assert winlen <= n_fft
// generate window
window_data.create(n_fft);
{
float* p = window_data;
for (int i = 0; i < (n_fft - winlen) / 2; i++)
{
*p++ = 0.f;
}
if (window_type == 0)
{
// all ones
for (int i = 0; i < winlen; i++)
{
*p++ = 1.f;
}
}
if (window_type == 1)
{
// hann window
for (int i = 0; i < winlen; i++)
{
*p++ = 0.5f * (1 - cosf(2 * 3.14159265358979323846 * i / winlen));
}
}
if (window_type == 2)
{
// hamming window
for (int i = 0; i < winlen; i++)
{
*p++ = 0.54f - 0.46f * cosf(2 * 3.14159265358979323846 * i / winlen);
}
}
for (int i = 0; i < n_fft - winlen - (n_fft - winlen) / 2; i++)
{
*p++ = 0.f;
}

// pre-calculated window norm factor
if (normalized == 2)
{
float sqsum = 0.f;
for (int i = 0; i < n_fft; i++)
{
sqsum += window_data[i] * window_data[i];
}
float scale = 1.f / sqrt(sqsum);

for (int i = 0; i < n_fft; i++)
{
window_data[i] *= scale;
}
}
}

Mat theta;
if (onesided)
{
n_freq = n_fft / 2 + 1;
}
else
{
n_freq = n_fft;
}
theta.create(n_fft, n_freq, size_t(8));

for (int i = 0; i < n_freq; i++)
{
for (int j = 0; j < n_fft; j++)
{
theta.row<double>(i)[j] = 2 * 3.14159265358979323846 * i * j / n_fft;
}
}

Mat real_basis, imag_basis;
real_basis.create(n_fft, n_freq, size_t(8));
imag_basis.create(n_fft, n_freq, size_t(8));

for (int i = 0; i < n_freq; i++)
{
for (int j = 0; j < n_fft; j++)
{
real_basis.row<double>(i)[j] = cos(theta.row<double>(i)[j]);
imag_basis.row<double>(i)[j] = -sin(theta.row<double>(i)[j]);
}
}

// multiply window
for (int i = 0; i < n_freq; i++)
{
for (int j = 0; j < n_fft; j++)
{
real_basis.row<double>(i)[j] *= window_data[j];
imag_basis.row<double>(i)[j] *= window_data[j];
}
}

if (normalized == 1)
{
double scale = 1.f / sqrt(n_fft);
for (int i = 0; i < n_freq; i++)
{
for (int j = 0; j < n_fft; j++)
{
real_basis.row<double>(i)[j] *= scale;
imag_basis.row<double>(i)[j] *= scale;
}
}
}

conv_data.create(n_fft, 1, n_freq * 2);

for (int i = 0; i < n_freq; i++)
{
for (int j = 0; j < n_fft; j++)
{
conv_data.channel(i).row<float>(0)[j] = (float)real_basis.row<double>(i)[j];
conv_data.channel(i + n_freq).row<float>(0)[j] = (float)imag_basis.row<double>(i)[j];
}
}

conv_transpose = ncnn::create_layer("Convolution1D");
ncnn::ParamDict conv_transpose_pd;

conv_transpose_pd.set(0, 2 * n_freq); // num_output
conv_transpose_pd.set(1, n_fft); // kernel_w
conv_transpose_pd.set(3, hoplen); // stride_w
conv_transpose_pd.set(19, 1); // dynamic_weight

conv_transpose->load_param(conv_transpose_pd);

return 0;
}

int Spectrogram_x86::forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt) const
{
// https://pytorch.org/audio/stable/generated/torchaudio.functional.spectrogram.html

// TODO custom window

Mat bottom_blob_bordered = bottom_blob;
if (center == 1)
{
Option opt_b = opt;
opt_b.blob_allocator = opt.workspace_allocator;
if (pad_type == 0)
copy_make_border(bottom_blob, bottom_blob_bordered, 0, 0, n_fft / 2, n_fft / 2, BORDER_CONSTANT, 0.f, opt_b);
if (pad_type == 1)
copy_make_border(bottom_blob, bottom_blob_bordered, 0, 0, n_fft / 2, n_fft / 2, BORDER_REPLICATE, 0.f, opt_b);
if (pad_type == 2)
copy_make_border(bottom_blob, bottom_blob_bordered, 0, 0, n_fft / 2, n_fft / 2, BORDER_REFLECT, 0.f, opt_b);
}

const int size = bottom_blob_bordered.w;

// const int frames = size / hoplen + 1;
const int frames = (size - n_fft) / hoplen + 1;

const size_t elemsize = bottom_blob_bordered.elemsize;

if (elemsize != sizeof(float))
{
return -100;
}

if (power == 0)
{
top_blob.create(2, frames, n_freq, elemsize, opt.blob_allocator);
}
else
{
top_blob.create(frames, n_freq, elemsize, opt.blob_allocator);
}
if (top_blob.empty())
return -100;

std::vector<Mat> inputs;
inputs.push_back(bottom_blob_bordered);
inputs.push_back(conv_data);

std::vector<Mat> outputs;
outputs.push_back(Mat());

Option opt_conv = opt;
opt_conv.use_packing_layout = false;

conv_transpose->create_pipeline(opt_conv);
conv_transpose->forward(inputs, outputs, opt_conv);
conv_transpose->destroy_pipeline(opt_conv);

Mat conv_top_blob = outputs[0]; // (2 * n_freq, frames)
float* conv_top_data = conv_top_blob;

if (power == 0) // as complex
{
// copy
for (int i = 0; i < frames; i++)
{
for (int j = 0; j < n_freq; j++)
{
top_blob.channel(j).row<float>(i)[0] = conv_top_data[j * frames + i];
top_blob.channel(j).row<float>(i)[1] = conv_top_data[(j + n_freq) * frames + i];
}
}
}
else
{
if (power == 1) // magnitude sqrt(re * re + im * im);
{
// copy
for (int i = 0; i < frames; i++)
{
for (int j = 0; j < n_freq; j++)
{
top_blob.row<float>(j)[i] = sqrtf(conv_top_data[j * frames + i] * conv_top_data[j * frames + i] + conv_top_data[(j + n_freq) * frames + i] * conv_top_data[(j + n_freq) * frames + i]);
}
}
}
else if (power == 2) // power re * re + im * im;
{
// copy
for (int i = 0; i < frames; i++)
{
for (int j = 0; j < n_freq; j++)
{
top_blob.row<float>(j)[i] = conv_top_data[j * frames + i] * conv_top_data[j * frames + i] + conv_top_data[(j + n_freq) * frames + i] * conv_top_data[(j + n_freq) * frames + i];
}
}
}
}

return 0;
}

} // namespace ncnn
53 changes: 53 additions & 0 deletions src/layer/x86/spectrogram_x86.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#ifndef LAYER_SPECTROGRAM_X86_H
#define LAYER_SPECTROGRAM_X86_H

#include "spectrogram.h"

namespace ncnn {

class Spectrogram_x86 : public Spectrogram
{
public:
Spectrogram_x86();
~Spectrogram_x86();

virtual int load_param(const ParamDict& pd);

virtual int forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt) const;

public:
int n_fft;
int power;
int hoplen;
int winlen;
int window_type; // 0=ones 1=hann 2=hamming
int center;
int pad_type; // 0=CONSTANT 1=REPLICATE 2=REFLECT
int normalized; // 0=disabled 1=sqrt(n_fft) 2=window-l2-energy
int onesided;

int n_freq;

Mat window_data;
Mat conv_data;

Layer* conv_transpose;
};

} // namespace ncnn

#endif // LAYER_SPECTROGRAM_X86_H
Loading
Loading