Skip to content
Closed

Disk #706

Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix bugs for optimizer with states
  • Loading branch information
564612540 committed Dec 24, 2024
commit 35d793fa11d2a7f2d64e8a525a5167a5b12ab7ca
11 changes: 11 additions & 0 deletions research/disk_optimizer/optimizers/KFadaclipoptimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,16 +69,27 @@ def step(self, closure=required) -> Optional[float]:
loss = self._compute_one_closure(closure)

if self.pre_step():
tmp_states = []
first_step = False
for p in self.params:
grad = p.grad
state = self.state[p]
if "kf_d_t" not in state:
state = dict()
first_step = True
state["kf_d_t"] = torch.zeros_like(p.data).to(p.data)
state["kf_m_t"] = grad.clone().to(p.data)
state["kf_m_t"].lerp_(grad, weight=self.kappa)
p.grad = state["kf_m_t"].clone().to(p.data)
state["kf_d_t"] = -p.data.clone().to(p.data)
if first_step:
tmp_states.append(state)
self.original_optimizer.step()
for p in self.params:
if first_step:
tmp_state = tmp_states.pop(0)
self.state[p]['kf_d_t'] = tmp_state['kf_d_t']
self.state[p]['kf_m_t'] = tmp_state['kf_m_t']
del tmp_state
self.state[p]["kf_d_t"].add_(p.data, alpha=1.0)
return loss
11 changes: 11 additions & 0 deletions research/disk_optimizer/optimizers/KFddpoptimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,17 +73,28 @@ def step(self, closure=required) -> Optional[float]:
loss = self._compute_one_closure(closure)

if self.pre_step():
tmp_states = []
first_step = False
for p in self.params:
grad = p.grad
state = self.state[p]
if "kf_d_t" not in state:
state = dict()
first_step = True
state["kf_d_t"] = torch.zeros_like(p.data).to(p.data)
state["kf_m_t"] = grad.clone().to(p.data)
state["kf_m_t"].lerp_(grad, weight=self.kappa)
p.grad = state["kf_m_t"].clone().to(p.data)
state["kf_d_t"] = -p.data.clone().to(p.data)
if first_step:
tmp_states.append(state)
self.reduce_gradients()
self.original_optimizer.step()
for p in self.params:
if first_step:
tmp_state = tmp_states.pop(0)
self.state[p]['kf_d_t'] = tmp_state['kf_d_t']
self.state[p]['kf_m_t'] = tmp_state['kf_m_t']
del tmp_state
self.state[p]["kf_d_t"].add_(p.data, alpha=1.0)
return loss
Original file line number Diff line number Diff line change
Expand Up @@ -70,17 +70,28 @@ def step(self, closure=required) -> Optional[float]:
loss = self._compute_one_closure(closure)

if self.pre_step():
tmp_states = []
first_step = False
for p in self.params:
grad = p.grad
state = self.state[p]
if "kf_d_t" not in state:
state = dict()
first_step = True
state["kf_d_t"] = torch.zeros_like(p.data).to(p.data)
state["kf_m_t"] = grad.clone().to(p.data)
state["kf_m_t"].lerp_(grad, weight=self.kappa)
p.grad = state["kf_m_t"].clone().to(p.data)
state["kf_d_t"] = -p.data.clone().to(p.data)
if first_step:
tmp_states.append(state)
self.reduce_gradients()
self.original_optimizer.step()
for p in self.params:
if first_step:
tmp_state = tmp_states.pop(0)
self.state[p]['kf_d_t'] = tmp_state['kf_d_t']
self.state[p]['kf_m_t'] = tmp_state['kf_m_t']
del tmp_state
self.state[p]["kf_d_t"].add_(p.data, alpha=1.0)
return loss
11 changes: 11 additions & 0 deletions research/disk_optimizer/optimizers/KFoptimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,16 +121,27 @@ def step(self, closure=required) -> Optional[float]:
loss = self._compute_one_closure(closure)

if self.pre_step():
tmp_states = []
first_step = False
for p in self.params:
grad = p.grad
state = self.state[p]
if "kf_d_t" not in state:
state = dict()
first_step = True
state["kf_d_t"] = torch.zeros_like(p.data).to(p.data)
state["kf_m_t"] = grad.clone().to(p.data)
state["kf_m_t"].lerp_(grad, weight=self.kappa)
p.grad = state["kf_m_t"].clone().to(p.data)
state["kf_d_t"] = -p.data.clone().to(p.data)
if first_step:
tmp_states.append(state)
self.original_optimizer.step()
for p in self.params:
if first_step:
tmp_state = tmp_states.pop(0)
self.state[p]['kf_d_t'] = tmp_state['kf_d_t']
self.state[p]['kf_m_t'] = tmp_state['kf_m_t']
del tmp_state
self.state[p]["kf_d_t"].add_(p.data, alpha=1.0)
return loss
Loading